Under the patronage of **HRH Prince Khalid Al-Faisal** Advisor to the Custodian of the Two Holy Mosques & Governor 1 of Makkah Region

المؤتمر الدولي الثاني والعشرون لإدارة الأصول والمرافق والصيانة The 22nd International Asset, Facility & Maintenance Management Conference

Digitization - Excellence - Sustainability

Automating Subsurface Utilities Detection and Visualization using Deep Learning and Augmented Reality

Mahmoud Hamdy Safaan & Mohamed Marzouk

26-28 January 2025 The Ritz-Carlton Jeddah, Kingdom of Saudi Arabia

www.omaintec.com @@@@ #OmaintecConf

An Intiative By

Organized by

TSG | EXICON شركة مجموعة المختص • The Specialist Group

BACKGROUND

Data Acquisition	Missing existing utilities.	Utilizing GPR for utilities detection and simplifies the interpretation process.
Time Consumption & Detection Accuracy	Manual and traditional methods are time-consuming and often lead to inaccuracies in detecting and mapping subsurface utilities.	Utilizing Mask R-CNN to automates the detection process Enhancing detection accuracy & significantly reducing the time required for subsurface utility detection.
Safety Hazards & Service	Disruptions & Regulatory Compliance	Integration of Augmented Reality (AR) offers an innovative way to visualize detected utilities, improving comprehension and decision-making.
ost Efficiency	Inefficiencies in traditional methods often lead to higher costs.	Reduce overall project costs by providing informed decision making

Digitization - Excellence - Sustainability

.....

FRAMEWORK

Selection Criteria Based on SNR value

Deep Learning Model Training

Model Preparation

Digitization - Excellence - Sustainability

Transfer Learning

O

CASE STUDY

Augmented Reality Visualization

Anchoring and Tracking Modules

Augmented Reality Visualization

Scene & User Interface Design

Model Visualization

RESULTS

CONCLUSION

Novel Framework Integration

• Deep learning and augmented reality integration for GPR data interpretation.

Research Objectives

- Validating records of existing utilities as-built.
- Demand for precise detection of subsurface utilities.
- Minimize service interruption and socioeconomic impacts.

Framework Stages

- Data Collection and Processing: GPR data collection, decryption, fusion, and processing.
- Training Mask R-CNN Model: Pixel-level instance segmentation, transfer learning, and data augmentation.
- Post-Processing: Enhance model predictions and generate point cloud.
- Visualization: Deploying an AR application for HoloLens.

RECOMMENDATION FOR FUTURE RESEARCH

Generalizing Machine Learning Algorithms:

- Explore different network architectures, training strategies, and data augmentation.
- Training the model on data of different soil and material.

Utilizing Cloud Computation:

- Streamline post-processing phase.
- Reduce computational time and enhance prediction efficiency.

Geolocation Integration:

Combine GPR data with other geospatial information for improved mapping accuracy.

Shape Generation Deep Learning Models:

• Develop 3D model and integrate with the framework.

Under the patronage of **HRH Prince Khalid Al-Faisal** Advisor to the Custodian of the Two Holy Mosques & Governor 1 of Makkah Region

المؤتمر الدولي الثاني والعشرون لإدارة الأصول والمرافق والصيانة The 22nd International Asset, Facility & Maintenance Management Conference

Digitization - Excellence - Sustainability

THANK YOU!

26-28 January 2025 The Ritz-Carlton Jeddah, Kingdom of Saudi Arabia

www.omaintec.com @@@@ #OmaintecConf

Organized by

TSG | EXICON. شركة مجموعة المختص • The Specialist Group